HarvestH2o Online Community

SECTIONS -|- ABOUT US -|- FAQS -|- ARTICLES -|- RESOURCES -|- VENDORS -|- NEWS -|- NEW PRODUCTS -|- SERVICES

NEWSLETTER

PRIVACY: We will not sell, rent or share your name with anyone. see policy

MOST POPULAR

RECENT COMMENTS

SERVICES

SITE CONTENT

Books
Consulting
Conveyance Systems
Floating Extractors
Gutters
How To Guides
New Products
Non-Water Resources
Pumps
Rainbarrels
RWH Active Catchment
RWH Advanced Info
RWH Basic Info
RWH Calculators
RWH FAQs
RWH Healthcheck
RWH Incentives
RWH New Products
RWH Nonprofits
RWH Passive Catchment
RWH Plumbing Code
RWH Regulations
RWH Research
RWH Resources
RWH Testimonials
RWH Vendors
System Design Services
Tank Calculations
Tank Sizing
Water Audits - Indoor
Water Audits - Outdoor
US Water Standards
Water Books
Water Conservation
Water Films
Water Quality
Water Related News
Workshops

Article Listing

Is Rainwater Harvesting a Good Investment
Drip Irrigation Basics
Florida Environmental House
Swales and Berms
Use It Twice - Greywater

Rainwater System Component Articles

Floating Filter
Gutters
Pumps
Pumps or Pressure Tanks

Pump Sizing

Storage Options

Sample Systems

Free Pumping
Off the Grid

Water Conservation Articles

Tale of Two Cities Rainwater Harvesting in Taos
Water - Why Care
Save Energy, Save Water

Water Quality Articles

Chlorination, Part I
Chlorination, Part II
Importance of pH
Is Rainwater Safe
Potable Rainwater: Filtration and Purification
UV Purification
UV and Carbon Filtration

Water Op Eds:

Climate Change
Greenest Roof
Water - Why Care

Everything You Need to Know about Ultraviolet Water Purification
by John Mone

A number of factors combine to make ultraviolet radiation a superior means of water purification for rainwater harvesting systems. Ultraviolet radiation is capable of destroying [UV does not actually destroy, but inactivate bacteria, see note] all types of bacteria. Additionally, ultraviolet radiation disinfects rapidly without the use of heat or chemical additives which may undesirably alter the composition of water.

The most familiar part of the spectrum is a narrow band of wavelengths visible to the human eye. Another band with wavelengths shorter than those of visible light, and not visible to the eye, is the ultraviolet part of the spectrum. Ultraviolet radiation can cause changes in living matter. The sun's rays cause sunburn. Rays from a welder's torch burn the unprotected eyes of an observer. The ultraviolet spectrum includes wavelengths from 2000 to 3900 Angstrom units (Å). One unit is one ten billionth of a meter. The 2000 to 3900 Å range may be divided into three segments:

Long-wave ultraviolet - The wavelength range is 3250 to 3900 Å. These rays occur naturally in sunlight. They have little germicidal value.

Middle-wave ultraviolet - The wavelength range is 2950 to 3250 Å, also found in sunlight. Middle-wave UV is best known for its sun-tanning effect; it provides some germicidal action, with sufficient exposure.

Short-wave ultraviolet - The wavelength range is 2000 to 2950 Å. This segment possesses by far the greatest germicidal effectiveness of all ultraviolet wavelengths. It is employed extensively to destroy bacteria, virus, mold, spores, etc., both air- and water-borne.

Short-wave ultraviolet does not occur naturally at the earth's surfaces, because the atmosphere screens out sunlight radiation below 2950 Å. In order to take practical advantage of the germ-killing potential of short-wave ultraviolet, it is necessary to produce this form of energy through the conversion of electrical energy. The conversion of electrical energy to short-wave radiant ultraviolet is accomplished in a mercury vapor lamp.

Mercury Vapor or Germicidal Lamps

The low-pressure variety of mercury vapor lamp, which can be referred to as a germicidal lamp, provides the most cost-effective and efficient source of short-wave ultraviolet energy. Germicidal lamps are made of special quartz glass that will allow 70 to 90 percent of the short ultraviolet rays to pass. Ordinary glass is not transparent to wavelengths below 3200 Å. The low pressure mercury vapor lamp emits radiation that is predominately at 2537 Å. This is in the region of maximum germicidal effectiveness.

The germicidal lamp works on the following principle: An electric arc is struck through an inert gas carrier, in a sealed special glass tube. Heat from the arc causes vaporization of the small amount of mercury contained in the sealed tube. The mercury, when vaporized, becomes ionized and in the electric arc gives off UV radiation.

Required Germicidal Energy

Bacteria withstand considerably more ultraviolet irradiation in water than in dry air. E.coli, for example, (common in the water of unprotected catchment systems), requires more UV exposure for their destruction in water than in dry air. In either case, the germicidal radiation must strike a microorganism to destroy it. This requires that the water be clear enough to allow transmission of an adequate quantity of UV energy. The degree of microbial destruction is a function of both the time and intensity of the radiation to which a given microorganism is exposed. A short exposure time at high intensity is as effective as a long exposure time at low intensity, provided the product of the time and intensity remains the same.

Any turbidity in the water reduces the range of transmission to UV radiation. Water that is naturally turbid, or that has become turbid from corrosion products formed during storage in steel tanks and liners, should be filtered before UV purification. A 5-micron filter prior to the UV lamp is recommended.

Purifier Design

Several design features are combined to determine the dosage delivered:

1. Wavelength output of the lamp.
2. Length of the lamp - when the lamp is mounted parallel to the direction of water flow, the exposure time is proportional to the length of the lamp.
3. Design water flow rate - exposure time is inversely related to the linear flow rate.
4. Diameter of the purification chamber - since the water itself absorbs UV energy, the delivered dosage diminishes logarithmically with the distance from the lamp.

In a typical operation, water enters the inlet of a UV lamp and flows through the annular space between the quartz sleeve (which contains the germicidal lamp) and the outside chamber wall. The irradiated water leaves through the outlet nozzle.

Features to look for:

1. Expandable system - parts should be as uniform and as interchangeable as possible to permit easy expansion later.
2. Sight port - enables visual monitoring of lamp operation; also permits later adaptation to electronic monitor device using the same port.
3. Single lamp per chamber - provides greater safety through more accurate monitoring than does a multi-lamp /single-chamber system.
4. Quartz protection sleeve - cold water moving past an unshielded lamp will reduce the lamp temperature and the radiation yield. A protective quartz sleeve will allow the higher lamp temperature required for optimum output of 2537 Å radiation.
5. Mechanical wiper - for cleaning the sleeve surface without shutdown or disassembly of the unit.
6. Optional accessories - Flow controls, UV light bulb monitor, electronic water shut-off valves and alarms, should be available to provide fail-safe operation without operator attendance.

A single lamp purifier can be designed to handle any flow rate up to approximately 2400 gallons per hour (gph). By multiplying purifier units, in series and in parallel, higher flow rates can be achieved.

The versatility of UV purification includes:

1. UV purification produces germ-free potable water for home, institutional and municipal use.
· Application to water wells: bacterial contamination of wells is unpredictable and may occur from seepage of surface water or sewage.
· Installation on outlet side of rainwater harvesting cisterns, most cisterns foster the proliferation of bacteria in untreated water.
2. It provides bacteria-free food process water without the use of germicides, oxidants, algaecides or chemical precipitants; particularly applicable where chlorine adversely affects flavor.

Chlorine Versus Ultraviolet Purification

As a tertiary treatment for water, chlorination offers the advantage of continued disinfection after initial treatment, since some chlorine remains in the water with residual germ fighting action. The ultraviolet method, however, has none of the following disadvantages of chlorine:

1. Chlorine treatment requires operation attention.
2. In small installations, when chlorine gas is liberated from a chlorine cylinder or moistened crystals or pellets, the fumes are extremely dangerous and may even be lethal.
3. Chlorine itself is a highly corrosive and toxic chemical.
4. Chlorine is an additive material which may impart an undesirable taste to the water and a decrease in pH.
5. Chlorine is chemically active and can react with foreign ingredients (e.g., as found in industrial waste-waters) to form toxic compounds, a matter of increasing concern to the Federal Government and to many states and municipalities.
· It may combine with ammonia to form "chloramine" which is acutely toxic to fish even at low concentration.
· It may combine with phenol to form "clorophenols", another dangerously toxic compound.

This article is an excerpt from a technical article courtesy of Atlantic UltraViolet Corporation. Sign in for a complete copy of this original technical paper as well as other technical papers and FAQs on UV lamps.

Note: Per the MEDRIX UV handbook, "the ultraviolet energy emitted by a UV-C germicidal lamp has the capacity to alter the nucleic acid (DNA) of viruses, bacteria, molds and parasites so they cannot reproduce and are thereby considered inactivated."

Related Topics:

Article on Floating Filter
Rainwater Harvesting Vendors [by State] - HarvestH2o.com
Potable Rainwater: Filtration and Purification

NSF on Water Treatment

Water Quality Handbook

UV 101 White Paper

TOP

HOME


LATEST ARTICLES

WATER NEWS

September 2014

Into The Storm: Forecasting The Future Of Water

Think the Southwest’s Drought Is Bad Now? It Could Last a Generation or More

Water Shortages Strike Another State

Are Fracking Chemicals Getting Too Close To Drinking Water Aquifers?

August 2014

Satellites Show Major Southwest Groundwater Loss

July 2014

Storms Get Headlines, but Drought Is a Sneaky, Devastating Game-Changer

Saving Water in California

Waste Not, Want Not

June 2014

First Ever Long-Term Rebate Study

Arizona Cities Could Face Cutbacks in Water From Colorado River, Officials Say

Home Water Management Using Rain Barrels

May 2014

A Postmodern Water Frontier

April 2014

Five Melbourne companies guzzle water

Drought Defense

Time to finally protect wetlands, streams

Texas Wins Advantage In Groundwater Fight With New Mexico

Texas Water Rules Are A Mess

March 2014

Water crisis in the twilight zone

The Thirsty West: What Happens in Vegas Doesn’t Stay in Vegas

West’s Drought and Growth Intensify Conflict Over Water Rights

New Indirect Potable Reuse Regulations — What To Expect

The Thirsty West: Can Tucson Survive Climate Change?

Conserve and Get a Smiley Face

February 2014

Days of Desiccation

EPA Releases Climate Assessment Update To National Stormwater Calculator

California Seeing Brown Where Green Used to Be

Malta needs 'national watermanagement plan

Severe Drought Has U.S. West Fearing Worst

Parched, California Cuts Off Tap to Agencies

January 2014

Its Great Lake Shriveled, Iran Confronts Crisis of Water Supply

EPA Announce Science Research Grants

3 Tips For Utilities On Effective Consumer Outreach

EPA Stormwater Ruling: How Will It Impact Utilities?

Spending Bill Includes Over $2 Billion For State Water Funds

California areas brace for water rationing as reservoir levels fall

Chemical levels in West Virginia water drop, but still no end in sight to ban

EPA's Top 10 Technology Needs For Water

Lead In D.C. Water Associated With Miscarriages

Is This the Future of RO

Old Water News >>

WORKSHOPS

List a Workshop

Santa Fe - Greywater Workshop

Hillsborough FL - Composting and RWH Workshop

 

Xerxes Tanks

Rain Harvesting Systems

RMS

Fun Facts

FAQS

  1. How do you harvest rainwater?
  2. Where do you get the water?
  3. What is the best way of harvesting rain?
  4. Why should I harvest rainwater?
  5. Do I need pumps to harvest rainwater?
  6. Can I use drip irrigation or soaker hoses with a rainwater?
  7. How big a yard can I water?
  8. How big are rain barrels?
  9. I want more pressure, how should I raise it?
  10. Can I water my grass with rainwater?

    and many more>>
Favorite Water Books

Taking on Water

A Great Aridness

Drinking Water

Tapped Out


 

ABOUT US -|--FAQS -| -ARTICLES -| -RESOURCES -| - VENDORS |- NEWS-|- NEW PRODUCTS -| SERVICES | BLOG

Copyright © 1990-2013 HarvestH2o, All Rights Reserved 505-603-5498